《正比例》教案1 教学目标: 1、知道与正比例函数的意义. 2、能写出实际问题中正比例关系与关系的解析式. 3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性. 4、激发学生学下面是小编为大家整理的《正比例》教案五篇(完整文档),供大家参考。
《正比例》教案1
教学目标:
1、知道与正比例函数的意义.
2、能写出实际问题中正比例关系与关系的解析式.
3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.
4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.
教学重点:对于与正比例函数概念的理解.
教学难点:根据具体条件求与正比例函数的解析式.
教学方法:结构教学法、以学生“再创造”为主的教学方法
教学过程:
1、复习旧课
前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)
2、引入新课
就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是.
顾名思义,谁能根据这个名字,类比一元一次方程、一元一次不等式的概念能举出一些的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)
这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成( )的形式.
一般地,如果( 是常数, )(括号内用红字强调)那么y叫做x的.特别地,当b=0时, 就成为( 是常数, )
3、例题讲解
例1、某油管因地震破裂,导致每分钟漏出原油30公升
(1)如果x 分钟共漏出y 公升,写出y与x之间的函数关系式
(2)破裂3.5小時后,共漏出原油多少公升
《正比例》教案2
教学目标:
1、使学生经历从具体实例中认识成正比例的量的过程,初步理解正比例的意义,学会根据正比例的意义判断两种相关联的量是不是成正比例。
2、使学生在认识成正比例的量的过程中,初步体会数量之间相依互变的关系,感受有效表示数量关系及其变化规律的不同数学模型,进一步培养观察能力和发现规律的能力。
教学重难点:正比例的意义以及判断两种相关联的量是不是成正比例。
教学准备:教学光盘
教学预设:
一、导入新课
1、谈话:老师准备去水果超市买一些苹果,已知苹果每千克的单价是6元,如果我准备买1千克,你能求出什么?(总价)
2、出示表格
已知苹果每千克的单价是6元
根据学生的回答将表格填写完整。
提问:如果买( )千克,总价( )元 ……;
观察表格,你们发现了什么?(当学生回答:买的千克数越多,总价就越高)
师小结:像这样一种量变化,另一种量也随着变化,我们就把这两种量叫做相关联的量[板书:两种相关联的量]
在这里——“买的千克数”和“总价”就是两种相关联的量。
二、探索新知
(一)体会两种相关联的量
1、出示例1表格
2、提问:这张表格中的两个量是否相关联?
学生发现:时间变化,路程也随着变化,路程和时间是两种相关联的量。(补充板书)
(二)探索两个变量之间的关系
1、谈话:请同学们进一步观察表中的数据,找一找这两种量的变化有什么规律?
启发学生从“变化”中去寻找“不变”。
学生可能会从不同的角度去寻找规律。
2、教师可根据交流的实际情况,及时引导学生通过计算确认这一规律,并有意识地从后一种角度突出这一规律。
如果学生发现不了上述规律,可引导学生写出几组相对应的路程与时间的比,并求出比值。
3、根据上面发现的规律,进一步启发学生思考:这个比值表示什么?上面的规律能不能用一个式子来表示?
路程
根据学生的回答,教师板书关系式:时间 = 速度(一定)
4、教师对两种量之间的关系作具体说明:当路程和对应时间的比的比值总是一定,也就是速度一定时,我们就说行驶的路程和时间成正比例,行驶的路程和时间是成正比例的量。
(板书:路程和时间成正比例)
反问:在什么条件下行驶的路程和时间呈正比例?
三、教学“试一试”
1、要求学生根据表中的已知条件先把表格填写完整。
2、根据表中的数据,依次讨论表格下面的四个问题,并仿照例1作适当的板书。
3、让学生根据板书完整地说一说铅笔的总价和数量成什么关系。
四、抽象表达正比例的意义
1、引导学生观察上面的两个例子,说说它们有什么共同点。
2、启发学生思考:如果用字母x和分别表示两种相关联的量,用 表示它们的比值,正比例关系可以用怎样的式子来表示?
根据学生的回答,板书关系式/x=(一定)
五、巩固练习
1、完成第63页的“练一练”。
先让学生独立思考并作出判断,再要求说明判断理由。你是怎样判断的?
2、做练习十三第1~3题。
第1题让学生按题目要求先各自算一算、想一想,再组织讨论和交流。
第2题先让学生独立进行判断,再指名说判断的理由。
第3题要先让学生说说题目要求我们把已知的正方形按怎样的比放大,放大后正方形的边长各是几厘米,再让学生在图上画一画。
填好表格后,组织学生讨论,明确:只有当两种相关联的量的比值一定时,它们才能成正比例。
六、全课小结
通过这节课的学习,你有哪些收获?
七、课堂作业:
完成补充习题的相关练习
补充练习:
1、判断下面每题中的两种量是不是成正比例,并说明理由。
①每小时织布米数一定,织布总米数和时间。
②每人树植棵数一定,参加植树人数和植树总棵数。
③订阅《*少年报》的份数和钱数。
④小新跳高的高度和他的身高。
⑤长方形的宽一定,它的面积和长。
2、选择。
a和b相关联的两种量,下面哪个式子表示a和b成正比例?
①a+b=12 ② =5 ③ab= ④a-b=3.8 ⑤b=7a
3、x、、z是三种相关联的量,已知x×=z。
当( )一定时,( )和( )成正比例。
《正比例》教案3
1.使学生初步认识正比例的意义、掌握正比例意义的变化规律。
2.学会判断成正比例关系的量。
3.进一步培养学生观察、分析、概括的能力。
教学重点和难点
理解正比例的意义,掌握正比例变化的规律。
教学过程设计
(一)复习准备
请同学口述三量关系:
(1)路程、速度、时间;(2)单价、总价、数量;(3)工作效率、时间、工作总量。
(学生口述关系式、老师板书。)
(二)学习新课
今天我们进一步研究这些数量关系中的一些特征,请同学们回答老师的问题。
幻灯出示:
一列火车1小时行60千米,2小时行多少千米?3小时、4小时、5小时……各行多少千米?
生:60千米、120干米、180千米……
师:根据刚才口答的问题,整理一个表格。
出示例1。(小黑板)
例1 一列火车行驶的时间和所行的路程如下表。
师:(看着表格)回答下面的问题。表中有几种量?是什么?
生:表中有两种量,时间和路程。
师:路程是怎样随着时间变化的?
生:时间1小时,路程是60千米;2小时,路程为120千米;3小时,路程为180千米……
师:像这样一种量变化,另一种量也随着变化,这两种量就叫做两种相关联的量。
(板书:两种相关联的量)
师:表中谁和谁是两种相关联的量?
生:时间和路程是两种相关联的量。
师:我们看一看他们之间是怎样变化的?
生:时间由1小时变2小时,路程由60千米变为120千米……时间扩大了,路程也随着扩大,路程随着时间的变化而变化。
师:现在我们从后往前看,时间由8小时变为7小时、6小时、4小时……路程又是如何变化的?
生:路程由480千米变为420千米、360千米……
师:从上面变化的情况,你发现了什么样的规律?(同桌进行讨论。)
生:时间从小到大,路程也随着从小到大变化;时间从大到小,路程也随着从大到小变化。
师:我们对比一下老师提出的两个问题,互相讨论一下,这两种变化的原因是什么?
(分组讨论)
师:请同学发表意见。
生:第一题时间扩大了,行的路程也随着扩大;第二题时间缩小了,所行的路程也随着缩短了。
师:我们对这种变化规律简称为“同扩同缩”。(板书)让我们再看一看,它们扩大缩小的变化规律是什么?
师:根据时间和路程可以求出什么?
生:可以求出速度。
师:这个速度是谁与谁的比?它们的结果又叫什么?
生:这个速度是路程和时间的比,它们的结果是比值。
师:这个60实际是什么?变化了吗?
生:这个60是火车的速度,是路程和时间的比值,也是路程和时间的商,速度不变。
驶多少千米,速度都是60千米,这个速度是一定的,是固定不变的量,我们简称为定量。
师:谁是定量时,两种相关联的量同扩同缩?
生:速度一定时,时间和路程同扩同缩。
师:对。这两种相关联的量的商,也就是比值一定时,它们同扩同缩。我们看着表再算一算表中路程与时间相对应的商是不是一定。
(学生口算验证。)
生:都是60千米,速度不变,符合变化的规律,同扩同缩。
师:同学们总结得很好。时间和路程是两种相关联的量,路程是随着时间的变化而变化的:时间扩大,路程也随着扩大;时间缩小,路程也随着缩小。扩大和缩小的规律是:路程和时间的比的比值总是一样的。
师:谁能像老师这样叙述一遍?
(看黑板引导学生口述。)
师:我们再看一题,研究一下它的变化规律。
出示例2。(小黑板)
例2 某种花布的米数和总价如下表:
(板书)
按题目要求回答下列问题。(幻灯)
(1)表中有哪两种量?
(2)谁和谁是相关联的量?关系式是什么?
(3)总价是怎样随着米数变化的?
(4)相对应的总价和米数的比各是多少?
(5)谁是定量?
(6)它们的变化规律是什么?
生:(答略)
师:比较一下两个例题,它们有什么共同点?
生:都有两种相关联的量,一种量变化,另一种量也随着变化。
师:对。两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。这就是今天我们学习的新内容。(板书课题:正比例的意义)
师:你能按照老师说的叙述一下例1中两个相关联的量之间的关系吗?
生:路程随着时间的变化而变化,它们的比值(也就是速度)一定,所以路程和时间是成正比例的量,它们的关系是正比例关系。
师:想一想例2,你能叙述它们是不是成正比例的量?为什么?(两人互相试说。)
师:很好。请打开书,看书上是怎样总结的?
(生看书,并画出重点,读一遍意义。)
师:如果表中第一种量用x表示,第二种量用y表示,定量用k表示,谁能用字母表示成正比例的两种相关联的量与定量的关系?
师:你能举出日常生活中成正比例关系的两种相关联的量的例子吗?
生:(答略)
师:日常生活和生产中有很多相关联的量,有的成正比例关系,有的是相关联,但不成比例关系。所以判断两种相关联的量是否成正比例关系,要抓住相对应的两个量是否商(比值)一定,只有商(比值)一定时,才能成正比例关系。
(三)巩固反馈
1.课本上的“做一做”。
2.幻灯出示题,并说明理由。
(1)苹果的单价一定,买苹果的数量和总价( )。
(2)每小时织布米数一定,织布总米数和时间( )。
(3)小明的年龄和体重( )。
(四)课堂总结
师:今天主要讲的是什么内容?你是如何理解的?
(生自己总结,举手发言。)
师:打开书,并说出正比例的意义。有什么不明白的地方提出来。
(五)布置作业
(略)
课堂教学设计说明
第一部分:复习三量关系,为本节内容引路。
第二部分:新课从创设正比例表象入手,引导学生主动、自觉地观察、分析、概括,紧紧围绕判断正比例的两种相关联的两个量、商一定展开思路,结合例题中的数据整理知识,发现规律,由讨论表象到抽象概念,使知识得到深化。
第三部分:巩固练习。帮助学生巩固新知识,由此验证学生对知识的理解和掌握情况,帮助学生掌握判断方法。最后指导学生看书,抓住本节重点,突破难点。安排适当的练习题,在反复的练习中,加强概念的理解,牢牢掌握住判断的方法。合理安排作业,进一步巩固所学知识。
总之,在设计教案的过程中,力争体现教师为主导,学生为主体的精神,使学生认识结构不断发展,认识水*不断提高,做到在加强双基的同时发展智力,培养能力,并为以后学习打下良好的基础。
板书设计
《正比例》教案4
设计说明
本节课教学的正比例是数学中比较重要的两个量的关系,它比较抽象、难理解,是今后学习反比例及初中学习函数知识的基础。结合本节课的教学内容及学情实际,本节课在教学设计上主要体现以下几个方面:
1.有效利用教材图表,增强对相关联的量的形象感受。
教学伊始,在复习铺垫的基础上,引导学生仔细观察图表。在观察中,使学生发现正方形的周长和面积随着边长的变化而变化及变化规律,充分体会到什么是相关联的量,为进一步学习正比例知识打下基础。
2.科学调动多种感官,增强对知识形成过程的体验。
在数学教学过程中,教师如果能够有效地调动学生的多种感官参与学习活动,让学生利用更多的大脑通路来处理学习信息,建立起对知识与技能的深刻记忆,成为学习的主人,就能促进学生提高学习效率。本设计努力为学生创设动眼、动手、动脑、动口的机会,使学生在观察、操作、分析、比较、讨论、交流中,不断探究相关联的两个量之间的关系,逐渐发现其中的规律,体会正比例的意义。
3.体会数学与生活的密切联系,关注对正比例意义的理解。
因为正比例表示的是两个相关联的量之间的关系,是学生接下来学习反比例及今后进一步学习函数知识的重要基础。所以,本设计十分重视学生对知识的理解。通过创设具体情境,激发学生的学习兴趣,使学生积极主动地思考并结合熟悉的情境及数量关系理解正比例的意义。
课前准备
教师准备 多媒体课件
教学过程
第1课时 正比例的认识
⊙复习导入
1.引导回顾。
师:什么是相关联的量?请举例说明。
(学生汇报)
2.导入新课。
师:两个相关联的量之间肯定存在着某种关系,我们今天要学习的正比例就是表示两个相关联的量之间的关系的,这种关系是怎样的呢?让我们一起进入今天的学习。
设计意图:通过回顾旧知,进一步理解相关联的量,为在新情境中探究两个相关联的量之间的变化规律作铺垫。
⊙探究新知
1.借助图表,进一步感知相关联的量。
面积/cm2
小组合作探究,交流下面的问题:
(1)上面是正方形周长与边长、面积与边长之间的变化情况,把表格填写完整,并说说你分别发现了什么。
(2)同桌合作填表。
(3)仔细观察表格,讨论:正方形的周长是怎样随着边长的变化而变化的?正方形的面积是怎样随着边长的变化而变化的?
预设
生1:我从表中发现正方形的边长增加,周长也增加。
生2:我从表中发现正方形的边长扩大到原来的几倍,周长就随着扩大到原来的几倍。
生3:我从表中发现正方形的周长总是边长的4倍。
生4:我从表中发现正方形的边长增加,面积也增加。
……
(4)比较:正方形的周长与边长的变化规律和正方形的面积与边长的变化规律有什么异同?
预设
生1:相同点是都随着边长的增加而增加。
生2:不同点是周长随边长变化的规律与面积随边长变化的规律不同。
生3:在变化过程中,正方形的周长与边长的比值一定,都是4。
生4:在变化过程中,正方形的面积与边长的比值是一个不确定的值。
《正比例》教案5
正比例
1.使学生通过具体问题情境认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系,能找到生活中成正比例的实例,并进行交流。
2.通过探索正比例意义的教学活动,使学生感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
3.通过观察、交流、归纳、推断等教学活动,感受数学思维过程的合理性,培养学生的观察能力、推理能力、归纳能力和灵活应用知识的能力。
认识成正比例的量,理解其意义,并能判断两种量是否成正比例关系。
理解正比例的意义,感受事物中充满着运动、变化的思想,并且特定的事物发展、变化是有规律的。
教具:小黑板小黑板。
学具:作业本,数学书。
一、联系生活,复习引入
(1)下面是居委会张阿姨负责的小区水费收缴情况,用这个表中的数能写成多少个有意义的比?哪些比能组成比例?把能组成的比例都写出来。
住户张家赵家
水费(元)1520
用水量(吨)68
(2)揭示课题。
教师:在上面的表中,有哪两种量?(水费和用水量、总价和数量)在我们*时的生活中,除了这两种量,我们还要遇到哪些数量呢?
教师:这些数量之间藏着不少的知识,今天这节课我们就来研究这些数量间的一些规律和特征。
二、自主探索,学习新知
1.教学例1
用小黑板在刚才准备题的表格中增加几列数据,变成下表。
住户张家赵家李家周家刘家吴家
水费(元)1520352517.5
用水量(吨)6814109
教师:请同学们观察这张表,先独立思考后再讨论、交流:从这张表中你发现了什么规律?并根据这种规律帮助张阿姨把表格填写完整。
教师根据学生的回答将表格完善,并作必要的板书。
教师:同学们发现表格中的水费随着用水量的增加也在不断增加,像这样水费随着用水量的变化而变化,我们就说水费和用水量是相互关联的。
板书:相关联
教师:你们还发现哪些规律?
学生在这里主要体会水费除以用水量得到的每吨水单价始终是不变的,教师可根据学生的回答板书出来,便于其他学生观察:
水费用水量=156=208=3514=……=2.5
教师:水费除以用水量得到的单价相等也可以说是水费与用水量的比值相等,也就是一个固定的数。
板书:水费用水量=每吨水单价(一定)
2.教学“试一试”
教师:我们再来研究一个问题。
小黑板出示第52页下面的“试一试”。
学生先独立完成。
教师:你能用刚才我们研究例1的方法,自己分析这个表格中的数据吗?
教师根据学生的回答归纳如下:
表中的路程和时间是相关联的量,路程随着时间的变化而变化。
时间扩大若干倍,路程也扩大相同的倍数;时间缩小若干倍,路程缩小相同的倍数。
路程与时间的比值是一定的,速度是每时80M,它们之间的关系可以写成路程时间=速度(一定)
3.教学“议一议”
教师:我们研究了上面生活中的两个问题,谁能发现它们之间的共同点呢?
引导学生归纳出这两个问题中都有相关联的量,一种量扩大或缩小若干倍,另一种量也随着扩大或缩小相同的倍数,所以它们的比值始终是一定的。
教师:像上面这样的两种量,叫做成正比例的量,它们的关系叫做成正比例关系。
4.教学课堂活动
教师:请大家说一说生活中还有哪些是成正比例的量。(1)完成练习十二的第1题。
教师:请同学们用所学知识判断一下,下面表中的两种量成正比例关系吗?为什么?
学生独立思考,先小组内交流再集体交流。
(2)完成练习十二的第2题。
这节课你们学到了哪些知识?用了哪些学习方法?还有哪些不懂的问题?